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Abstract:  This paper present an improved exponential transformation for nearly singular 

boundary element integrals in elasticity problems. The new transformation is less sensitive to the 

position of the projection point compared with the original transformation. In our work, the 

conventional distance function is modified into a new form in polar coordinate system. Based on 

the refined distance function, an improved exponential transformation is proposed in polar 

coordinate system. Moreover, to perform integrations on irregular elements, an adaptive 

integration scheme considering both the element shape and the projection point associated with 

the improved transformation is proposed. Furthermore, when the projection point is located 

outside the integration element, another nearest point is introduced to subdivide the integration 

elements into triangular or quadrilateral patches of good shapes. Numerical examples are 

presented to verify the proposed method. Results demonstrate the accuracy and efficiency of our 

method. 
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1. introduction 

Near singularities are involved in many boundary element method (BEM) analyses of engineering 

problems, such as problems on thin shell-like structures [Krishnasamy et al (1994); Liu (1998)], 



 

the crack problems [Dirgantara (2000)], the contact problems [Aliabadi (2000)], as well as the 

sensitivity problems [Zhang D et al (1999)]. Accurate and efficient evaluation of nearly singular 

integrals with various kernel functions of the type O( 1/ r ) is crucial for successful 

implementation of the successful implementation of the boundary type numerical methods based 

on boundary integral equations (BIEs), such as the boundary element method (BEM), the 

boundary face method (BFM) [Zhang JM (2009); F.L. Zhou (2013)]. A near singularity arises 

when a source point is close to but not on the integration elements. Although those integrals are 

actually regular in nature, they can’t be evaluated accurately by the standard Gaussian quadrature. 

This is because, the denominator r, the distance between the source and the field point, is close to 

zero but not zero. The difficulty encountered in the numerical evaluation mainly results from the 

fact that the integrands of nearly singular integrals vary drastically with respect to the distance r. 

Various numerical techniques have been developed to remove the near singularities, such as global 

regularization [Sladek (1993); Liu (1999)], semi-analytical or analytical integral formulas [Niu 

(2005); Zhou (2008)], the sinh transformation [Johnston (2005)], polynomial transformation [Tells 

(1987)], adaptive subdivision method [Gao (2000); Zhang J.M (2009)], distance transformation 

technique [Ma (2001), (2001); Qin (2011)], the PART method [Hayami (1994), (2005)], and the 

exponential transformation [Xie (2011); Zhang YM (2009), (2010)]. Most of them benefit from 

the strategies for computing singular integrals. Among those techniques, the exponential 

transformation technique seems to be a more promising method for dealing with different orders 

of nearly singular integrals. However, the transformation is only limited to 2D boundary element 

and the accuracy is sensitive to the position of the projection point. In this paper, we develop the 

exponential transformation technique for the nearly singular integrals in 3D boundary element 

method. Moreover, the improved method is less sensitive to the position of the projection point. 

In our method, firstly the conventional distance function is reviewed. Then the conventional 

distance function is modified into a new form. Based on the modified distance function, the 

exponential transformation in Refs. [Xie (2011), Zhang YM (2009), (2010)] can be developed to 

3D BEM in a new form. Moreover, to perform integrations on irregular elements, the element 

subdivision technique considering both the element shape and the positions of the project point is 

employed in combination with the improved transformation. Although the element subdivision 

technique is used, the computational cost is reduced dramatically compared with the conventional 



 

element subdivision techniques [Gao (2000); Zhang J.M (2009)]. Furthermore, in order to get 

subtriangles or subquadrangles of good shapes, another nearest point is introduced instead of the 

projection point when the projection point is located outside the integration element. With our 

method, the boundary nearly singular integrals of regular or irregular elements can be accurately 

and effectively calculated. Results demonstrate the accuracy and efficiency of our method. 

Moreover, our method is less sensitive to the projection of the project point than the conventional 

exponential transformation method.  

This paper is organized as follows. The general form of nearly singular integrals is described in 

Section 2. Section 3 briefly reviews the distance function in polar coordinate system and then the 

distance function is constructed in ( , )  coordinate system in a new form. In Section 4, the 

transformations for nearly singular integrals are presented and the element subdivision technique 

is introduced. Numerical examples are given in Section 5. The paper ends with conclusions in 

Section 6. 

2. General descriptions 

In this section, we will give a general form of the nearly singular integrals over 3D boundary 

elements. First we consider the boundary integral equations for 3D elasticity problems. The 

well-known self-regular BIE for elasticity problems in 3-D is 

    0 ( ( ) ( )) ( , ) ( ) ( , )j j ij j iju u T d t U d
 

     s y s y s s y                       (1) 

where s and y represent the field point and the source point in the BEM, with components si and yi, 

i=1,2,3, respectively and  
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Eq. (1) is discretized on the boundary   by boundary elements ( 1 )e e N    defined by 

interpolation functions. The integral kernels of Eq. (1) become nearly singular when the distance 

between the source point and integration element is very small compared to the size of integration 

element. And the integrals in Eq. (1) become nearly singular with different orders, namely, 



 

( , )ijU s y with near weak singularity, and ( , )ijT s y  with near strong singularity. In this paper, we 

develop the exponential transformation method for various boundary integrals with near 

singularities of different orders. The new method is detailed in following sections. For the sake of 

clarity and brevity, we take following integrals as a general form to discuss: 

    2

( , ) , 1,2,3lS

fI dS l r
r

   
x y x y                              (2) 

where f is a smooth function, x and y represent the field point and the source point in BEM, 

with components xi and yi, respectively. S represents the boundary element. We assume that the 

source point is close to S, but not on it. 

 

3. Construction of new distance function 

3.1 The conventional distance function in polar coordinate 

In this section, we will briefly review the distance function [Ma (2001), (2001); Qin (2011)]. 

 

Figure 1: The minimum distance r0, from the source point xc to the 3D surface element 

As shown in Fig.1, employing the first-order Taylor expansion in the neighborhood of the 

projection point, we have: 
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where 1 2( , )c c are the coordinates of the projection point in the local system 1 2( , )t t , 

2 2
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point to the element in most cases. nk represents the component of the unit outward direction to the 

surface boundary and 
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The distance function is expressed as follows: 

         2 2 2 2 3
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2 2 2 3
0( ) ( )kr A r O                                          (5b) 

Using Eq. (5a) and Eq. (5b), Eq. (2) can be written as:                                                        
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where 0( )
( )
r

A
 


 , ( ) ( ) ( )k kA A A   , and ( , )g    is a smooth function. 

3.3 Improved distance function in polar coordinate  

The conventional distance function has been reviewed in Section 3.1. However, as illustrated in 

Fig. 2, if the projection point is not the ideal point, the line with end points xc and y is not 

perpendicular to the tangential plane through xc. 

 

Figure 2: The projection point is not the ideal point 

Using Eq. (3) and Eq. (5a), the real distance between the source point and the field points can be 

written as: 
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where 2 ( ) 0ka A   , 2 ( )k kb d A  , 22
0 =r d  

The following distance function can be given as: 
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2
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With Eq. (7) and Eq. (8), Eq. (2) can be written as:                                                         
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where 0( )
( )
r

A
 


 , ( ) ( ) ( )k kA A A   , and ( , )g    is a smooth function. 

In this section, we obtain the distance function in a new form in the two coordinate systems, 

respectively. It is should be noted that if the project point is coincide with the ideal projection 

point, Eq. (9) is similar to Eq. (6). In next section, we will construct the improved exponential 

transformation based on the refined distance function.  

 

4. Improved transformation and element subdivision technique 

4.1 Improved exponential transformation 

In this section, we will give the improved transformation considering the modified distance 

function. As observed from Eq. (6), Eq. (9), the near singularity is essentially related to the radial 

variable  .  

Firstly from Eq. (6), we only consider the radial variable integral which depicts near singularity 

in the Eq. (6), as follows: 
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The following exponential transformation is given as in [ Xie, 2013]: 
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Using Eq. (8), Eq. (7) can be written as: 
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Eq. (8) is similar to the transformation in Refs. [Xie (2013); Zhang YM (2009), (2010)]. However, 

for the first time, the exponential transformation is applied for evaluation of nearly singular 

integrals in 3D elasticity problems. 

Then from Eq. (8), the radial variable integral which depicts near singularity in the Eq. (9) is 

considered, as follows: 
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Using the same steps as in [Xie (2013)], the following exponential transformation is given: 
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Note that if the projection point is the ideal projection point, Eq. (11) is similar to Eq. (8). With the 

help of the exponential transformation above, the integrals with near weak singularity or near 

strong singularity can be accurately calculated. It should be noted that we still use the exact r 

instead of the approximate r in Eq. (2). So the nearly singular kernels are not changed into other 

forms.  

4.2 Exponential transformation in combination with element subdivision 

The element subdivision is indispensible for treating the nearly singular integrals in the 3D cases 

as in Refs. [Ma, 2001; Ma, 2002; Qin, 2011]. In this section, we subdivide an integration element 

in a suitable pattern considering both element shape and the position of the projection point in the 

element. Adaptive integration based on element subdivision to calculate integrals is employed just 

as a combination for the improved exponential transformation. We classify the element 

subdivision into two cases considering whether the projection point is located in or outside the 

integration element.  

4.2.1 Element subdivision when the projection point is in the integration element 



 

First, we consider the case when the projection point is located in the integration element. Note 

that although the original quadrangle has a fine shape, the four subtriangles may have poor shapes 

depending on the position of xc (the projection point) (see Fig. 3.(a)). Obtaining triangles of fine 

shape seems more difficult by direct subdivision for irregular initial elements as shown in Fig. 3(a) 

even xc is located at the element center. If the angle denoted by, Fig. 3(b) – 3(f) between two lines 

in common with end point xc in each triangle is larger by a certain value 3/2  and even tends 

to , numerical results will become less accurate.  

 

Fig. 3. Subdivisions of quadrilateral element depending on the position of the 

projection point 

To solve the troubles described above, we have developed an adaptive subdivision for an arbitrary 

quadrilateral element. The original element is divided into several triangles and additional 

quadrangles, which is different from these as shown in Fig. 3 (a1)-(f1). The adaptive subdivision 

consists of three main steps described briefly as follows: 

First, compute the distances in the real-world-coordinate system from xc to each edge of the 

element and obtain the minimum distance d. 

Then, based on d, we construct a box defined in parametric system, but with square shape in the 

real- world -coordinate system as can as possible, to well cover xc. 

Finally, triangles are constructed from the box and additional quadrangles are created outside the 

box in the element. 

Applying the strategy above, adaptive subdivisions for the elements in Fig. 3 with suitable patterns 

are shown in Fig. 3 (a1)-(f1). For each triangle, the nearly singular integrals are calculated by the 

scheme discussed in Section 4.1. However, for each quadrangle, nearly singular integrals will arise 

but not severe, which can be calculated by adaptive integration scheme based on the element 

subdivision technique discussed in Refs. [Zhang, 2009].  It should be noted that, although the 
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element subdivision is adopted, the computational cost is reduced dramatically compared with the 

conventional subdivision technique to compute nearly singular integrals on the whole element. 

This is because the integrals on the local region of the element, which is more close to the source 

point, are calculated by the new variable transformations technique.  

Then we consider the case when the projection point is located outside the integration element. 

Only a few literatures refer to nearly singular integrals of this type, such as the tangential 

transformation in Ref. [Ma, 2002] and new variable transformations in Ref. [Xie, 2013]. In our 

implementation, when the projection point is located outside the integration element, another 

subdivision is employed in our method. The point xd which is the most close point to the source 

point in the element is introduced. The positions of the nearest point are shown in Fig. 4. We 

subdivide the element in three triangles around xd instead of the projection point. And the 

transformations (11) are employed for nearly singular integrals in each triangle. In this subdivision, 

the nearest point is always in the element, so we still can follow the three main steps.  

 

Fig. 4. The positions of the nearest point 

5. NUMERICAL EXAMPLES 

Example 1: A regular quadrilateral element to verify the sensitiveness to the position of the 

projection point  

In this example, we study the influence of the projection point on our method when the source 

point is fixed. Four vertexes of the element locate at (0, 0, 0), (1.0, 0, 0), (1.0, 1.0, 0) and (0, 1.0, 

0), respectively. In each case, the source point is fixed at (0.5, 0.5, 0.01), and the projection point 

P is determined by an offset parameter k, 0 1k  , using the following equation : 



 

                  c ck p x x                                 (12) 

Where xc is the ideal projection point at the centre of the element with coordinates (0, 0) in local 

1 2( , )t t  system if we constrain both t1 and t2 in [-1, 1]. 

 
Figure 6:  Various integrals with the kernel 11U  

Given a set of values of k, all computations have been performed with our method using Eq. (19) 

and Eq. (23) respectively. The reference values are obtained by adaptive element subdivisions 

[Zhang J.M (2009)]. As shown in Fig. 6, it is obvious that, the results obtained by Eq. (23) are in 

good agreement with the reference values even the offset parameter k increases up to 15%, and the 

maximum error is less than 0.02 percent. The results obtained by Eq. (19) are not as accurate as 

that of Eq. (23). And the maximum error from Eq. (19) is 1.2 percent within the offset parameter 

15.00  k . As shown in Fig. 7, , the results obtained by Eq. (23) are also in good agreement 

with the reference values even the offset parameter k increases up to 15%, and the maximum error 

is less than 0.8 percent, while the maximum error from Eq. (19) is about 8.2 percent within the 

offset parameter 15.00  k . 



 

 
Figure 7:  Various integrals with the kernel 11T  

  

It is should be noted that although in most cases the projection point coincides with the ideal 

projection point, the special cases of the offset projection point are also considered in this paper. In 

our implementation, the improved exponential transformation is applied for evaluation of the 

nearly singular integrals arising in 3D boundary elements. This is because the accuracy of the 

results is less sensitive to the position of the project point. 

Example 2:  Hollow circular cylinder problems 

 

 Figure 7: Hollow circular cylinder elasticity problem 

The first case considers a hollow cylinder elasticity problem. In this case, the geometry, and the 

BEM model for this problem are shown in Fig. 7. As illustrated in Fig. 7, the elements are slender 

elements in the side surfaces. To evaluate the nearly singular integrals, the improved 



 

transformation combined with the element subdivision technique is applied. We assume the 

thickness l is 0.08 or 0.008. The Young’s modulus is 1 and the Poisson’s ratio is 0.25. In order to 

make comparison with the exact solutions, boundary conditions are imposed on all faces 

corresponding to quadratic exact solutions. And the solutions are as follows: 

                       

2 2 2
1

2 2 2
2

2 2 2
3

-2 3 3
 3 2 3

3 3 3

u x y z
u x y z
u x y z

   
   
   

                              (28) 

As shown in Fig. 7, the BEM model with 179 8-node quadrilateral elements and the total number 

of nodes is 753. The sample points are distributed on the boundary. The boundary evaluation 

points are uniformly distributed on isoparametric line segment from (0.0, 0.5) to (1.0, 0.5) in the 

parametric space of the outer cylinder surface. In this space, [0,1]u  and [0,1]v . And the 

results at the boundary sample points are illustrated in Fig. 8 and Fig. 9. The exact solutions are 

computed through Eq. (28), and numerical solutions are obtained by BEM using Eq. (26) for 

nearly singular integrals. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8:  

 

 

Results at the boundary 

points when l=0.08 

 

  

Results at the domain points 
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Figure 9: Results at the boundary points when l=0.008  

As illustrated in Fig. 8 and Fig. 9, the numerical solutions obtained by the proposed method are in 

good agreement with the exact solutions for the linear elasticity problem. The results of our 

method keep stable and reasonable accuracy using the model of same meshes. It can be concluded 

from this example that the proposed method is suitable for linear elasticity problems in thin 

structures. Note that, the slender element, of which the length and width ratio is larger than 10, is 

applied for long and narrow surfaces in this example. However, in our method the accuracy is not 

influenced by elements with poor quality. 

Example 3:  Thin cylindrical shell with fixed ends subjected to constant internal pressure 

This problem setup and a radial displacement profile are shown in Fig. 10. Note that the fixed 

ends create boundary layers which are difficult to capture with finite element methods. The exact 

shell theory solution is given in Ref. [Hughes (2005)], for plane stress and provided as a reference 

below: 
2

1 2( ) (1 sin sinh cos ) ( 2, 2)PRu x C x x C xcosh x x L L
Et

              (32) 

where 1
sin cosh cos sinh
sinh cosh sin cos

C    
   





, 2

cos sinh sin cosh
sinh cosh sin cos

C    
   





 

The sample points are uniformly distributed on the line segment which has end points at (-2.01, 0, 

-4.99) and (-2.01, 0, 4.99). The Young’s modulus is 1800 and the Poisson’s ratio is 0.25. The BFM 

model with 448 8-node quadrilateral elements and the total number of nodes is 1454. Results at 

the sample points are illustrated in Fig. 11. 

 

Figure 10: Thin cylindrical shell, 

surface meshes, and the 

meshes of the end face 

 

 



 

 
 
 
 
 
 
 
 
 
 

Figure 11: Numerical radial displacement compared with the shell theory solution 

From Fig. 11, although the results are not that accurate, it can be seen that the numerical radial 

displacement profile captures the boundary layers and picks up the plateau very well. Compared 

with FEM, the plate and shell theories based on various assumptions about the geometry are not 

needed in BEM. Moreover, compared with the method in [Hughes (2005)], no solid element is 

required in BEM.  

 

6. CONCLUSIONS 

This paper presented an improved exponential transformation for nearly singular integrals 

which appears in the application of BEM for elasticity problems. By applying the proposed 

transformation in the BEM, the number of integral points in the near singular integral patches has 

been reduced significantly. Furthermore, results obtained by the proposed method are less 

sensitive to the location of the projection point than that obtained by traditional exponential 

transformation method. 
To perform integration on irregular elements, an adaptive integration scheme considering the 

element shape and the projection point in combination with the improved transformation has been 

introduced. Numerical examples have been presented to verify the proposed method. Results 

demonstrate the accuracy and efficiency of our method. The sensitivity of the results to the position 

of the projection point has also been demonstrated. For nearly hypersingular integrals or other 

nearly singular integrals of higher orders, however, the present method is not so effective. Extending 

our method to compute nearly hypersingular integrals is ongoing. 
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算例：U11 

0.57211029491803056 

0.505 0.57211028637147776 0.57211036901628887 

0.510 0.57211185654307661 0.57210968973263132 

0.515 0.57211264392269823 0.57211052785914596 

0.520 0.57210514421112413 0.57210955277031661 

0.525 0.57208181167152972 0.57211407093085020 

0.530 0.57204445831515127 0.57210406614085452 

0.535 0.57204813455902337 0.57211409584041906 



 

0.540 0.57215606888491910 0.57211121515046381 

0.545 0.57233399773121674 0.57210374791021834 

0.550 0.57244398940083319 0.57212044160205200 

0.555 0.57235341478914969 0.57210712244365969 

0.560 0.57205115773492332 0.57211689859940518 

0.565 0.57166761814535272 0.57213073076062670 

0.570 0.57141596327362187 0.57205295418881819 

0.575 0.57144702333587394 0.57200397146528226 

 

算例：T11 

-0.48799878246338113 

0.505 -0.48796043577992865 -0.48804682319555520 

0.510 -0.48908460996366560 -0.48754681974653097 

0.515 -0.48775519166118991 -0.48728640488663300 

0.520 -0.48160861798152710 -0.49067325888027108 

0.525 -0.48285701695827016 -0.48404297802904978 

0.530 -0.48832360911452677 -0.49192864073669423 

0.535 -0.49143450984193265 -0.48486063122443113 

0.540 -0.49816756344362495 -0.48983991283190759 

0.545 -0.50495528702176395 -0.48747560027027942 

0.550 -0.50094088449720342 -0.48927211074133653 

0.555 -0.49136497184879374 -0.48735526680684466 

0.560 -0.48394501689511182 -0.49166198658242105 

0.565 -0.46528139962593323 -0.48446513312203587 

0.570 -0.44753946037457681 -0.48606537406997530 

0.575 -0.44833674600284085 -0.48745484324289562 

0.580 

 

 


